
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 6, 587-591 (1986) 

ON PARALLEL COMPUTATION OF THREE-DIMENSIONAL 
WIND-DRIVEN CIRCULATION 

BOGUSKAW JACKOWSKI 

Institute of Hydroengineering, Polish Academy of Sciences, ul. Cystersdw 1 1 ,  80-953 Gdarisk, Poland. 

PAWEC PACZKOWSKI 

Institute of Mathematics, Gdarisk University, ul. Wita Stwosza 57, 80-952 Gdarisk, Poland 

INTRODUCTION 

A significant speed-up in time-consuming computations of wind-driven circulations can be 
achieved by introducing parallelism into the numerical method, if possible. Such a speed-up is 
particularly needed in the case of three-dimensional models. This paper is intended as a case study, 
illustrating that even quite standard computational techniques (such as the finite element method) 
may lead, in a natural way, to parallel algorithms. 

The idea of the model of wind-driven circulations that we consider goes back to Ekman,' 
Welander' and their successors. Originally, the calculations described here were made on a 
sequential machine3 using the formulation of the model proposed by Kolodko et aL4 Later on, 
however, an observation was made that the computations can be carried out in parallel. Now the 
authors believe that the parallel formulation of the algorithm is even more natural than the 
sequential one: it reflects the parallelism of the physical phenomenon and is closely related to the 
discrete formulation of the model. The proposed approach seems to be general enough to be 
applied to other models which possess a similar mathematical description (an evolutionary form of 
the governing equations). In particular, many of the existing non-stationary models of three- 
dimensional wind-driven circulations can be treated in this way. 

We start with the formulation of the governing equations. The discrete form of the equations 
obtained by application of the finite element method is shown to be convenient for the parallel 
treatment and the parallel algorithm is formulated. Finally, its complexity is briefly discussed. 

FORMULATION O F  THE MODEL 

The situation we consider is shown in Figure 1. 

denivellation is assumed to have the following mathematical description: 
The effect of wind action on the behaviour of the water velocity field and the surface 

Governing equations 

8,u = 8,(v8,u) + gVh 

8,h = v.u (continuity equation), 

(momentum equation), 
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surface elevation, z=-h(x,y, t )  

horizontal velocity profile, u (x,y, I, t \ 
Figure 1. General situation 

Boundary conditions 

z = 0: vazu = - s, 

z = H :  u = 0, 
at shore: Unorma, = 0, 

where 

a,, a,,, a,, at 
V = (ax, a,) 
h(x9 Y )  
u(x, y ,  Z, t )  = (ux, u y )  horizontal velocity, 
9 gravity acceleration, 
v(x, y ,  Z, t )  
s(x,  Y ,  t )  

U(x, y ,  t )  = loH u(x, y ,  z,  t )  dz horizontal transport, 

H ( x ,  Y )  

partial differential operators, 
two dimensional gradient operator, 
denivellation of the surface, 

semi-empirical coefficient of turbulent viscosity, 
semi-empirical function, representing the wind action on the water surface, 

depth ( [h i  << H ) .  

For the sake of simplicity Coriolis force is neglected here, but it can be easily introduced into the 
model, if needed. The model can also be adjusted to the situation in which h is comparable to H ,  
without spoiling the feasibility of the parallel treatment. 

DISCRETIZATION O F  THE MODEL 

The finite element method seems to be suitable for spatial discretization of the model, since shapes 
of water reservoirs are usually very irregular. The grid is constructed as follows: the surface is 
triangulated and a uniform vertical structure of the grid is imposed in the interior of the reservoir. 
This leads to the partition of the reservoir into prisms, as shown in Figure 2. 

In order to obtain a simple discrete model the simplest shape functions (linear over edges) and 
the node-based integration scheme over the elements are applied. An explicit finite difference 
scheme is used for time discretization. 

Let q denote the number of surface nodes and p the number of layers. The discrete quantities to 
be computed are hj ,  the surface denivellation at the jth node, and uj = [ujl,.  . . , ujp], the velocity 
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Figure 2. Partition into the finite elements 

profile below the jth surface node, for j = 1 , .  . . , q, where, in turn, ujk are two-dimensional vectors of 
horizontal velocities U j k  = ( u ? k ,  U T k ) .  

The resulting discrete model has the following form (the details of the derivation of these 
formulae are omitted here since they are not relevant to the problem of parallelism): for j = 1,. . . , q 

Mj(~y+'  - u;)/S = Q; U; + C R j k h ;  -I- f;, (3) 
keEj 

where 

6 the time step, 
E j the set of surface nodes belonging to the same surface element as nodej, i.e. the nodes 

that are neighbours of node j ,  including node j itself, 
fj" the p-dimensional, time dependent vector corresponding to wind extortion (i.e. to the 

boundary condition on the surface), 
Mj, N j  a diagonal p x p matrix and a scalar, respectively, (both determined by the sizes of the 

elements that are neighbours of the jth vertical), 
Q; a time dependent tridiagonal p x p matrix, corresponding to the operator J,(vJ,)  in 

equation (l), 
Rjk, Rkj p-dimensional vectors, corresponding to the operator V, 
n the number of the current time step. 

It is particularly important for the formulation of the parallel algorithm that the surface 
denivellation and the velocity profile at a given vertical depend only on the surface denivellations 
and the velocity profiles at the neighbouring verticals. 

PARALLEL ALGORITHM 

The set of equations (3), (4) could be treated parallely in a general way as, for example, in 
References 5 or 6. In this particular case, however, we can propose an algorithm which seems 
to reflect better the evolution of the physical process. 

The computations can be done by p concurrent processes. With each vertical j a process IIj 
is associated which has to compute the velocity profile u;+' and the surface denivellation h;" 
for consecutive time steps n = 0,1,2,. . . We assume that processes corresponding to the 
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neighbouring verticals can communicate with each other and that the data associated with the 
jth vertical (Mj, Nj, Qj”, uj” fj”, hj” and R,, for k E j )  are local for the process Hi. 

Algorithm 

Every process nj,j = 1 , .  . . , p ,  proceeds as follows: 

(i) nj communicates with each of the processes nk for k € E j .  
nj sends the values of hJ and Rjk.uj” to nk and, in return, receives the values of h: and Rkj.u: 
computed by nk. 

(ii) Hj computes uj”+ and hj”+ according to equations (3) and (4), using the information received 

The applied communication pattern enables the processors to perform the computations with a 
possibly small amount of local data. Therefore the processes require only a small local memory, the 
more so as the vectors Rjk and 

in step (i). 

can be, in fact, represented by single numbers. 

COMPLEXITY OF THE ALGORITHM 

Under the assumption that the processes proceed at the same speed, O(q) + C can be taken as the 
measure of complexity of each time step, where C is the cost of communication. In the case of 
optimal scheduling of information exchange C is O(1). On the other hand O(pq) arithmetical 
operations are necessary to compute uj”+l, h;+’ (forj = 1 , .  . . , q) sequentially from the equations (3) 
and (4). This means that the speed-up obtained by the use of parallelism is by a factor p .  Since p is 
the number of concurrently working processes one may argue that the exploitation of parallelism is 
near to optimal. 

REMARKS 

It is worthy of note that the concurrency of the presented algorithm is not due to a clever 
manipulation of data. On the contrary, as has already been mentioned, the algorithm simply 
reflects the parallelism of the physical phenomenon. Therefore this approach can be regarded as 
even more natural than the traditional, sequential one. 

The presented description of the algorithm is general enough to be adjusted to different specific 
models of concurrent computations. Instead of explicit communication, global common resources 
can be used by synchronous processes. The computations can also be carried out by a network of 
processors with direct communication between processors corresponding to neighbouring 
verticals. If the interconnection pattern of processors is fixed (like in ILLIAC IV) and does not 
provide direct connections between processors corresponding to neighbouring verticals, more 
complex broadcast strategies should be used. This, however, might increase the amount of time 
spent on communication. 

Though parallel computers are not yet in everyday use, access to such machines is becoming 
easier. Therefore the authors believe that the parallelism in numerical methods is important not 
only as a theoretically interesting feature but also as an approach which is more and more of 
practical importance. 



THREE-DIMENSIONAL WIND-DRIVEN CIRCULATION 59 1 

REFERENCES 

1 .  V. M. Ekman, ‘uber die horizontalzirkulation winderzeugter Meeresstromungen’, Ark. Math. Astr. Och. Fys., 17, (1923). 
2. P. Welander, ‘Wind action on a shallow sea: some generalizations of Ekman’s theory’, Tellus, 9, 45-59 (1957). 
3. B. Jackowski, ‘Computation of wind-driven circulations in shallow lakes’, Proc. 4th International Conference on Finite 

4. J. Kojodko, B. Jackowski and E. Wojtowicz, Technical Report C1-3/1982, Institute of Hydroengineering of PAS, 

5. D. Heller, ‘A survey of parallel algorithms in numerical linear algebra’, SIAM Review, 20, 740 (1978). 
6. Y. Wallach, Alternating Sequential/Parallel Processing, LNCS 127, Springer-Verlag, Berlin, Heidelberg, New York, 

Elements in Water Resources, Hannover, 1982, pp. 7.3-7.12. 

Gdansk (in Polish). 

1982. 




